• CBEC Lab
  • OSU CBEC
  • NMR CBEC

Aggregator

Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria

8 years 1 month ago
A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to be Brevibacillus laterosporusvia morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1 with isopropanol, purified by high-performance...
Xu Yang

Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria

8 years 1 month ago
A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to be Brevibacillus laterosporusvia morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1 with isopropanol, purified by high-performance...
Xu Yang

Emerging new strategies for successful metabolite identification in metabolomics

8 years 2 months ago
This review discusses strategies for the identification of metabolites in complex biological mixtures, as encountered in metabolomics, which have emerged in the recent past. These include NMR database-assisted approaches for the identification of commonly known metabolites as well as novel combinations of NMR and MS analysis methods for the identification of unknown metabolites. The use of certain chemical additives to the NMR tube can permit identification of metabolites with specific physical...
Kerem Bingol

Emerging new strategies for successful metabolite identification in metabolomics

8 years 2 months ago
This review discusses strategies for the identification of metabolites in complex biological mixtures, as encountered in metabolomics, which have emerged in the recent past. These include NMR database-assisted approaches for the identification of commonly known metabolites as well as novel combinations of NMR and MS analysis methods for the identification of unknown metabolites. The use of certain chemical additives to the NMR tube can permit identification of metabolites with specific physical...
Kerem Bingol

Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction

8 years 2 months ago
The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and...
Brandon L Crowe

Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction

8 years 2 months ago
The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and...
Brandon L Crowe

Model for the allosteric regulation of the Na+/Ca2+ exchanger NCX

8 years 2 months ago
The Na(+) /Ca(2+) exchanger provides a major Ca(2+) extrusion pathway in excitable cells and plays a key role in the control of intracellular Ca(2+) concentrations. In Canis familiaris, Na(+) /Ca(2+) exchanger (NCX) activity is regulated by the binding of Ca(2+) to two cytosolic Ca(2+) -binding domains, CBD1 and CBD2, such that Ca(2+) -binding activates the exchanger. Despite its physiological importance, little is known about the exchanger's global structure, and the mechanism of allosteric...
Layara Akemi Abiko

Model for the allosteric regulation of the Na+/Ca2+ exchanger NCX

8 years 2 months ago
The Na(+) /Ca(2+) exchanger provides a major Ca(2+) extrusion pathway in excitable cells and plays a key role in the control of intracellular Ca(2+) concentrations. In Canis familiaris, Na(+) /Ca(2+) exchanger (NCX) activity is regulated by the binding of Ca(2+) to two cytosolic Ca(2+) -binding domains, CBD1 and CBD2, such that Ca(2+) -binding activates the exchanger. Despite its physiological importance, little is known about the exchanger's global structure, and the mechanism of allosteric...
Layara Akemi Abiko

Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data

8 years 2 months ago
Functional motions of (15)N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per protein. Recently, NMR chemical exchange saturation transfer (CEST) experiments have emerged to probe slow millisecond motions complementing R1ρ and CPMG-type experiments. CEST also simultaneously reports on site-specific R1 and R2 parameters. It is shown here how...
Yina Gu

Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data

8 years 2 months ago
Functional motions of (15)N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per protein. Recently, NMR chemical exchange saturation transfer (CEST) experiments have emerged to probe slow millisecond motions complementing R1ρ and CPMG-type experiments. CEST also simultaneously reports on site-specific R1 and R2 parameters. It is shown here how...
Yina Gu

Nanoparticle-Assisted Removal of Protein in Human Serum for Metabolomics Studies

8 years 5 months ago
Among human body fluids, serum plays a key role for diagnostic tests and, increasingly, for metabolomics analysis. However, the high protein content of serum poses significant challenges for nuclear magnetic resonance (NMR)-based metabolomics studies because it can strongly interfere with metabolite signal detection and quantitation. Although several methods for protein removal have been proposed, including ultrafiltration and organic-solvent-induced protein precipitation, there is currently no...
Bo Zhang

Nanoparticle-Assisted Removal of Protein in Human Serum for Metabolomics Studies

8 years 5 months ago
Among human body fluids, serum plays a key role for diagnostic tests and, increasingly, for metabolomics analysis. However, the high protein content of serum poses significant challenges for nuclear magnetic resonance (NMR)-based metabolomics studies because it can strongly interfere with metabolite signal detection and quantitation. Although several methods for protein removal have been proposed, including ultrafiltration and organic-solvent-induced protein precipitation, there is currently no...
Bo Zhang

NMR Order Parameter Determination from Long Molecular Dynamics Trajectories for Objective Comparison with Experiment

8 years 5 months ago
Functional protein motions covering a wide range of time scales can be studied, among other techniques, by NMR and by molecular dynamics (MD) computer simulations. MD simulations of proteins now routinely extend into the hundreds of nanoseconds time scale range exceeding the overall tumbling correlation times of proteins in solution by several orders of magnitude. This provides a unique opportunity to rigorously validate these simulations by quantitative comparison with model-free order...
Yina Gu

Protocol To Make Protein NMR Structures Amenable to Stable Long Time Scale Molecular Dynamics Simulations

8 years 5 months ago

J Chem Theory Comput. 2014 Apr 8;10(4):1781-7. doi: 10.1021/ct4010646.

ABSTRACT

A robust protocol for the treatment of NMR protein structures is presented that makes them amenable to long time scale molecular dynamics (MD) simulations that are stable. The protocol embeds an NMR structure in a native low energy region of the recently developed ff99SB_φψ(g24;CS) molecular mechanics force field. Extended MD trajectories that start from these structures show good consistency with proton-proton nuclear Overhauser effect data, and they reproduce NMR chemical shift data better than the original NMR structures as is demonstrated for four protein systems. Moreover, for all proteins studied here the simulations spontaneously approach the X-ray crystal structures, thereby improving the effective resolution of the initial structural models.

PMID:26580385 | DOI:10.1021/ct4010646

Da-Wei Li
Rafael Brüschweiler

Decoding the Mobility and Time Scales of Protein Loops

8 years 5 months ago
The flexible nature of protein loops and the time scales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. In order to obtain a predictive understanding of the dynamic properties of loops, 500 ns molecular dynamics (MD) computer simulations of 38 different proteins were performed and validated using NMR chemical shifts. A total of 169 loops were analyzed and classified into three types, namely fast...
Yina Gu

NMR Order Parameter Determination from Long Molecular Dynamics Trajectories for Objective Comparison with Experiment

8 years 5 months ago
Functional protein motions covering a wide range of time scales can be studied, among other techniques, by NMR and by molecular dynamics (MD) computer simulations. MD simulations of proteins now routinely extend into the hundreds of nanoseconds time scale range exceeding the overall tumbling correlation times of proteins in solution by several orders of magnitude. This provides a unique opportunity to rigorously validate these simulations by quantitative comparison with model-free order...
Yina Gu

Decoding the Mobility and Time Scales of Protein Loops

8 years 5 months ago
The flexible nature of protein loops and the time scales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. In order to obtain a predictive understanding of the dynamic properties of loops, 500 ns molecular dynamics (MD) computer simulations of 38 different proteins were performed and validated using NMR chemical shifts. A total of 169 loops were analyzed and classified into three types, namely fast...
Yina Gu

Protocol To Make Protein NMR Structures Amenable to Stable Long Time Scale Molecular Dynamics Simulations

8 years 5 months ago
A robust protocol for the treatment of NMR protein structures is presented that makes them amenable to long time scale molecular dynamics (MD) simulations that are stable. The protocol embeds an NMR structure in a native low energy region of the recently developed ff99SB_φψ(g24;CS) molecular mechanics force field. Extended MD trajectories that start from these structures show good consistency with proton-proton nuclear Overhauser effect data, and they reproduce NMR chemical shift data better...
Da-Wei Li

PPM_One: a static protein structure based chemical shift predictor

8 years 10 months ago
We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM_One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain...
Dawei Li

PPM_One: a static protein structure based chemical shift predictor

8 years 10 months ago
We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM_One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain...
Dawei Li